A+ Answers

Question 15 

 

Suppose you are proving that an integer derived in a certain way is even, and that you are at a point in the proof that you have the integer expressed as 7(4k2 + 4k + 1) + 1. How should you rewrite this expression to show that the integer is even?

28k2 + 28k + 7 + 1

28k2 + 28k + 8

20(k2 + k) + 8(k2 + k + 1)

2(14k2 + 14k + 4)

 

 

Question 16 

 

Which one of the following gives a recursive algorithm for computing an, where n is a positive integer and a is a real number?

 

procedure power(a: real number, n: positive integer)

if n = 1 then power(a, n) := a

else power(a, n) := a∙power(a, n)

procedure power(a: real number, n: positive integer)

for i = 1 to n

power := a∙power

procedure power(a: real number, n: positive integer)

power := a

for i = 2 to n

power := a∙power

procedure power(a: real number, n: positive integer)

if n = 1 then power(a, n) := a

else power(a, n) := a∙power(a, n – 1)

 

 

Question 17 

 

Let f be the function such that f(0) = 1, f(1) = 4, and

f(n) = f(n – 1)∙f(n – 2) + 1 for all integers n greater than 1. Which one of the following is true?

 

f(3) = 4 and f(4) = 105

f(3) = 5 and f(4) = 21

f(3) = 21 and f(4) = 106

f(3) = 20 and f(4) = 105

 

 

 

 

Question 18 

 

If {an} is the sequence defined by an = (n + 5)/2 for all positive integers n, which one of the following is a recursive definition for the sequence?

 

a1 = 1 and, for n = 2, 3, 4, . . . ,

an = an–1 + 5/2

 

a1 = 1 and, for n = 2, 3, 4, . . . ,

an = an–1 + 1/2

 

a1 = 3 and, for n = 2, 3, 4, . . . ,

an = an–1 + 5/2

 

a1 = 3 and, for n = 2, 3, 4, . . . ,

an = an-1 + 1/2

 

 

Question 19  

Use the graph below to match each quantity with the correct value.

 

:

total number of vertices?

number of edges connecting a and c?

number of edges connecting a and b?

degree of vertex e?

 

 

 

If you need assistance with writing your assignment, essay, our professional assignments / essay writing service is here to help!

Order Now